Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848981

RESUMO

In this study, a previously known high-affinity silica binding protein (SB) was genetically engineered to fuse with an integrin-binding peptide (RGD) to create a recombinant protein (SB-RGD). SB-RGD was successfully expressed in Escherichia coli and purified using silica beads through a simple and fast centrifugation method. A further functionality assay showed that SB-RGD bound to the silica surface with an extremely high affinity that required 2 M MgCl2 for elution. Through a single-step incubation, the purified SB-RGD proteins were noncovalently coated onto an electrospun silica nanofiber (SNF) substrate to fabricate the SNF-SB-RGD substrate. SNF-SB-RGD was characterized by a combination of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and immunostaining fluorescence microscopy. As PC12 cells were seeded onto the SNF-SB-RGD surface, significantly higher cell viability and longer neurite extensions were observed when compared to those on the control surfaces. These results indicated that SB-RGD could serve as a noncovalent coating biologic to support and promote neuron growth and differentiation on silica-based substrates for neuronal tissue engineering. It also provides proof of concept for the possibility to genetically engineer protein-based signaling molecules to noncovalently modify silica-based substrates as bioinspired material.

2.
Nanomaterials (Basel) ; 8(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538349

RESUMO

In this study, we first synthesized a slow-degrading silica nanofiber (SNF2) through an electrospun solution with an optimized tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP) ratio. Then, laminin-modified SNF2, namely SNF2-AP-S-L, was obtained through a series of chemical reactions to attach the extracellular matrix protein, laminin, to its surface. The SNF2-AP-S-L substrate was characterized by a combination of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) spectroscopy, nitrogen adsorption/desorption isotherms, and contact angle measurements. The results of further functional assays show that this substrate is a biocompatible, bioactive and biodegradable scaffold with good structural integrity that persisted beyond 18 days. Moreover, a synergistic effect of sustained structure support and prolonged biochemical stimulation for cell differentiation on SNF2-AP-S-L was found when neuron-like PC12 cells were seeded onto its surface. Specifically, neurite extensions on the covalently modified SNF2-AP-S-L were significantly longer than those observed on unmodified SNF and SNF subjected to physical adsorption of laminin. Together, these results indicate that the SNF2-AP-S-L substrate prepared in this study is a promising 3D biocompatible substrate capable of sustaining longer neuronal growth for tissue-engineering applications.

3.
J Biomed Mater Res A ; 104(11): 2730-43, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27345435

RESUMO

A detailed genomic and epigenomic analyses of neural stem cells (NSCs) differentiation in synthetic microenvironments is essential for the advancement of regenerative medicine and therapeutic treatment of diseases. This study identified the changes in mRNA and miRNA expression profile during NSC differentiation on an artificial matrix. NSCs were grown on a surface-modified, electrospun tetraethyl-orthosilicate nanofiber (designated as SNF-AP) by providing a 3D-environment for cell growth and differentiation. Differentially expressed mRNAs and miRNAs of NSC differentiated in this microenvironment were identified through microarray analysis. The genes and miRNA targets responsible for the differentiation fate of NSCs and neuron development process were determined using Ingenuity Pathway Analysis (IPA). SNF-AP enhanced the expression of genes that activates the proliferation, development, and outgrowth of neurons, differentiation and generation of cells, neuritogenesis, outgrowth of neurites, microtubule dynamics, formation of cellular protrusions, and long-term potentiation during NSC differentiation. On the other hand, PDL inhibited neuritogenesis, microtubule dynamics, and proliferation and differentiation of cells and activated the apoptosis function. Moreover, the nanomaterial promoted the expression of more let-7 miRNAs, which have vital roles in NSC differentiation. Overall, SNF-AP is biocompatible and applicable scaffold for NSC differentiation in the development of neural tissue engineering. These findings are useful in enhancing in vitro NSC differentiation potential for preclinical studies and future clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2730-2743, 2016.


Assuntos
MicroRNAs/genética , Nanofibras/química , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , RNA Mensageiro/genética , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Nanofibras/ultraestrutura , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos Sprague-Dawley
4.
Int J Nanomedicine ; 11: 729-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013873

RESUMO

In this work, silica nanofibers (SNFs) were prepared by an electrospinning method and modified with poly-d-lysine (PDL) or (3-aminopropyl) trimethoxysilane (APTS) making biocompatible and degradable substrates for neuronal growth. The as-prepared SNF, modified SNF-PDL, and SNF-APTS were evaluated using scanning electron microscopy, nitrogen adsorption/desorption isotherms, contact angle measurements, and inductively coupled plasma atomic emission spectroscopy. Herein, the scanning electron microscopic images revealed that dissolution occurred in a corrosion-like manner by enlarging porous structures, which led to loss of structural integrity. In addition, covalently modified SNF-APTS with more hydrophobic surfaces and smaller surface areas resulted in significantly slower dissolution compared to SNF and physically modified SNF-PDL, revealing that different surface modifications can be used to tune the dissolution rate. Growth of primary hippocampal neuron on all substrates led to a slower dissolution rate. The three-dimensional SNF with larger surface area and higher surface density of the amino group promoted better cell attachment and resulted in an increased neurite density. This is the first known work addressing the degradability of SNF substrate in physiological conditions with neuron growth in vitro, suggesting a strong potential for the applications of the material in controlled drug release.


Assuntos
Materiais Biocompatíveis/química , Eletroquímica , Hipocampo/fisiologia , Nanofibras/química , Neurônios/fisiologia , Dióxido de Silício/química , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Hipocampo/citologia , Microscopia Eletrônica de Varredura , Neurônios/citologia , Porosidade , Ratos , Silanos/química , Propriedades de Superfície
5.
J Mater Chem B ; 2(9): 1205-1215, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261357

RESUMO

In this study, pure silica nanofibers (SNFs) were fabricated by the electrospinning technique. Subsequently, the as-prepared SNFs were modified with (3-aminopropyl) trimethoxysilane (APTS) for applications in neural tissue engineering. The structure and properties of the as-prepared SNFs and the modified SNFs (SNF-APxM, x = 1-3) were evaluated with FTIR, TGA, nitrogen adsorption/desorption isotherms, and SEM. It was found that the surface hydrophilicity of SNF-APxM was lowered upon increasing the amino alkyl group content. The SEM and confocal images revealed that neural stem cells (NSCs) cultured on the electrospun SNFs and SNF-APxM substrates were elongated along the fibers in comparison to poly-d-lysine-coated (PDL-coated) substrate. In addition, a higher degree of proliferation and more responsive cells were observed for the NSCs cultured on the SNF-AP3M substrate than those on the SNFs and the PDL-coated substrates. The results indicated that the APTS-modified silica nanofibers can be potential substrates for regulating growth and differentiation of NSCs in culture.

6.
Bioeng Bugs ; 3(2): 129-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539029

RESUMO

Baculoviruses are one of the most studied insect viruses both in basic virology research and in biotechnology applications. Incorporating an internal ribosome entry site (IRES) into the baculovirus genome generates bi-cistronic baculoviruses expression vectors that produce two genes of interest. The bi-cistronic baculoviruses also facilitate recombinant virus isolation and titer determination when the green fluorescent protein was co-expressed. Furthermore, when the secretion proteins were co-expressed with the cytosolic green fluorescent protein, the cell lysis and cytosolic protein released into the culture medium could be monitored by the green fluorescence, thus facilitating purification of the secreted proteins.


Assuntos
Baculoviridae/genética , Baculoviridae/metabolismo , Vetores Genéticos , Proteínas Recombinantes/biossíntese , Animais , Linhagem Celular , Clonagem Molecular , Regulação Viral da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células Hep G2 , Humanos , Proteínas Recombinantes/genética , Spodoptera/genética , Spodoptera/metabolismo
7.
Protein Expr Purif ; 81(1): 18-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911064

RESUMO

The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP. The NL1 protein (0.129±0.013 mg/8×10(7) High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified rat NL1 promoted and enhanced the growth rate (137.07±9.74 µm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53±4.53 µm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.


Assuntos
Baculoviridae/genética , Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Animais , Axônios/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/isolamento & purificação , Moléculas de Adesão Celular Neuronais/farmacologia , Linhagem Celular , Cromatografia de Afinidade , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Mariposas , Neurônios , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia
8.
Biosci Biotechnol Biochem ; 75(7): 1342-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21737931

RESUMO

A bi-cistronic baculovirus-insect/larval system containing a polyhedron promoter, an internal ribosome entry site (IRES), and an egfp gene was developed as a cost-effective platform for the production of recombinant human interferon gamma (rhIFN-γ). There was no significant difference between the amounts of rhIFN-γ produced in the baculovirus-infected Spodoptera frugiferda 21 cells grown in serum-free medium and the serum-supplemented medium, while the Trichoplusia ni (T. ni) and Spodoptera exigua (S. exigua) larvae afforded rhIFN-γ amounting to 1.08±0.04 and 9.74±0.35 µg/mg protein respectively. The presence of non-glycosylated and glycosylated rhIFN-γ was confirmed by immunoblot and lectin blot. The immunological activity of purified rhIFN-γ, with 96% purity by Nickel (II)-nitrilotriacetic acid (Ni-NTA) affinity chromatography, was similar to that commercially available. Moreover, the rhIFN-γ protein from T. ni had more potent antiviral activity. These findings suggest that this IRES-based expression system is a simple and inexpensive alternative for large-scale protein production in anti-viral research.


Assuntos
Baculoviridae/genética , Interferon gama/biossíntese , Ribossomos/genética , Spodoptera/metabolismo , Spodoptera/virologia , Animais , Linhagem Celular , Cromatografia de Afinidade , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Larva/genética , Larva/virologia , Biossíntese de Proteínas , Spodoptera/genética
9.
J Virol Methods ; 175(2): 206-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21619896

RESUMO

Chikungunya virus infection has emerged in many countries over the past decade. There are no effective drugs for controlling the disease. To develop cell-based system for screening anti-virus drugs, a bi-cistronic baculovirus expression system was utilized to co-express viral structural proteins C (capsid), E2 and E1 and the enhanced green fluorescence protein (EGFP) in Spodoptera frugiperda insect cells (Sf21). The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form a syncytium, allowing characterization of cholesterol and low pH requirements for syncytium formation. Western blot analysis showed three structural proteins were expressed in baculovirus infected cells. The structural proteins of Chikungunya virus that is required for cell fusion was determined with various recombinant baculoviruses bearing different lengths of the viral structural protein genes. Protein E1 was required for cell fusion and indicating that Chikungunya viral membrane fusion was a class II membrane fusion. It was also demonstrated that the heterologous expression of alphavirus monomeric E1 can induce insect cell fusions. Furthermore, this cell-based system provides a model for studying class II viral membrane fusion.


Assuntos
Baculoviridae/genética , Vírus Chikungunya/fisiologia , Expressão Gênica , Proteínas Estruturais Virais/biossíntese , Internalização do Vírus , Animais , Técnicas de Cultura de Células , Fusão Celular , Linhagem Celular , Vírus Chikungunya/genética , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Spodoptera , Proteínas Estruturais Virais/genética
10.
J Virol Methods ; 159(2): 152-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19490969

RESUMO

Recombinant baculoviruses are suitable for the high-level production of large multi-protein complexes. A tri-cistronic expression vector was constructed by the inclusion of two internal ribosome entry sites (IRESs). In this novel polycistronic vector, one single polyhedrin promoter controlled the transcription of a tri-cistronic transcript. Also, the first cistron was translated through a cap-dependent mechanism, while the second and third cistrons were translated by the IRESs derived from the 5' UTR of Rhopalosiphum padi virus (RhPV) and Perina nuda virus (PnV), respectively. The ratio of tri-cistronic gene expression levels produced by the three translational initiation modules is about 2:1:1 (cap:PnV IRES:RhPV IRES). This study indicates that polycistronic genes can be co-expressed at the translational level as in prokaryotic expression system by baculovirus biotechnology.


Assuntos
Baculoviridae/genética , Expressão Gênica , Genes , Vetores Genéticos , Biologia Molecular/métodos , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Ribossomos/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...